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Integral photoelasticity [i] is concerned with the problem of determining the stressed 
state of a body with the help of transillumination. In this sense integral photosensitivity 
can be thought of as optical tomography of a tensor field [2]. 

In the presence of weak optical anisotropy [2] it is possible to measure, by means of 
transillumination along a ray, two integrals of the components of the stress tensor oij. 
There arises the problem of using the maximum information contained in these ray integrals 
and finding the stressed state of the body from them. A partial answer to these questions 
and the corresponding bibliography are contained in [1-4]. 

From the technical standpoint the transillumination-is most conveniently conducted in 
parallel planes (z = const). It is precisely for such measurements that a method for deter- 
mining Ozz is given, and for a linearly deformable body a class of stressed states which make 
it possible to calculate all components of the stress tensor from Ozz(X, y, z) is identified. 

i. We introduce an orthogonal coordinate system in a cylindrical body whose side sur- 
face is free. As the z axis we take the axis passing through the center of gravity of the 
cross section S and as the x and y axis we take the inertial axes of the cross section. 

The components of the stress tensor satisfy the equations of equilibrium 

~ij,z -- 0 (i. j = x, y, z) ( 1 . 1 )  

and  t h e  b o u n d a r y  c o n d i t i o n s  on  t h e  c o n t o u r  F - t h e  f r e e  s i d e  s u r f a c e  - 

ax3zL~ + au37y ::: (I. (1.2) 

We shall write the condition of equilibrium of an element S(m, 8) of thickness Az in the 
direction of the z axis with the help of the ray integral (see Fig. i): 

0, = =  - i '  - ( 1 . 3 )  

Here m i are the components of the unit vector normal to the ray s m x = cos O; my = sin0; and, 
m is the distance from the origin of the coordinates to the straight line s The difference 
of the forces on the top and bottom surfaces of the element is balanced by the tangential 
force on the side surface (z 0 ~ [z, z ~-Az]) 

dl ~ l r~ '  ~ , 

Dividing both sides by Az and passing to the limit Az + 0, we put the condition of 
equilibrium into the differential form 

~I~ 1 
f l  

din'  
m 

and then, differentiating with respect to m, into the form of a Radon transformation 

0 H (m, O, z) a~z (rl~, l, z )dl .  om 

o Thus  f i n d i n g  ~f a~  f r o m  t h e  r a y  i n t e g r a l  H r e d u c e s  t o  t h e  s t a n d a r d  p r o c e d u r e  o f  i n v e r t i n g  

t h e  Radon  t r a n s f o r m  [ 5 ] .  

We represent azx and Oy z as two-dimensional vectors in a plane in the form of a sum of 
the two-dimensional gradient and the curl with potentials F and G: 
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Fig. 1 

0 e 0 __o G 6 x z = - - ~ F + ~ a ,  % z = - - ~ F - - &  . (1,4) 

We introduce the coordinate t, measured counterclockwise along the contour r. The boundary 
i) , 

conditions (1.2) for Oiz, taking into account Eq. (1.4), are transformed as follows: ~G-- 

F = 0 on F We substitute Eq. (i 4) into the equation of equilibrium Oiz,i = 0 and write a1~ " 

F as a sum F = F+ + F 0, so that 

0 0 p. 
A + F = A + F +  = ~ a ~ ,  7 n F + = t )  on A + F . = f l ,  

= A+F { ( 1 . 5 )  
~ O z +  F .  

I f  t h e r e  i s  no normal  r o t a t i o n  (G = 0 ) ,  t h e n  t h e  f u n c t i o n  F+ and t h e r e f o r e  Oxz and O2z a r e  
determined from the solution of the Poisson equation (1.5). Otherwise the solution F+ de- 
termines only partially the potential component of the stresses. 

It is interesting to note that H can be quite easily expressed in terms of F+. In- 
deed, we represent the integral H as a contour integral, closing the contour by a segment 
of arc of the curve F. Substituting Eq. (1.4) in to Eq. (1.3), taking into account what we 
have said above and the relations (1.5), reduces H to the form 

H ( m , ( ) , z ) = y o  , ,, ~ 0 ~ i T f ! d g - - ~  1; I d.z'- 7jTF~d[. 

The l a t t e r  e x p r e s s i o n  can a l s o  be used  as t h e  b a s i c  e x p r e s s i o n  f o r  c o n s t r u c t i n g  c o m p u t a t i o n a l  
a l g o r i t h m .  

2. We s h a l l  now s t u d y  t h e  r e d u c t i o n  o f  a d i f f e r e n t  r a y  i n t e g r a l  (A) [ 2 ] :  A(m, 0. z )  

~mzmj<u We s h a l l  f i r s t  d e r i v e  f o r m u l a  which  r e l a t e s  P(m, e)  - t h e  o f  (Tzz([[. a projection 

the principal vector of the force of the cross section S(m, 8) on the direction m (see Fig. 
i) - with the integrals A and H: 

(,., 0) = l e .  du ( 2 . 1 )  P 

For this we integrate over S(m, 0) the equations of equilibrium contracted with the vector mi: 

m i ~ o i ~ a . ~ : d g = - -  m z k N ~ z ~ + ~  i<)dxd9 . . . . .  o P(m, 0. z). ( 2 . 2 )  

In  Eq. ( 2 . 2 )  t h e  f a c t  t h a t  t h e  s i d e  s u r f a c e  i s  f r e e  o f  any l o a d s  was t a k e n  i n t o  a c c o u n t .  

We shall perform the integration over the variables ~ and m in Eq. (2.1) (m I is the 
value of m on the contour F): 

~n 

P(m, O, z) .[ t" oi~,n, d ldm- -  S H(m,,, O, z) ,m,,. ( 2 . 3 )  
S ( m , 0 )  m I 

S u b s t i t u t i n g  Eq. ( 2 . 3 )  t r a n s f o r m s  t h e  e x p r e s s i o n  ( 2 . 2 )  i n t o  t h e  e x p r e s s i o n  

S i ~ a~ dl = -- -~z H (m o, O, z) dm~ -- et (m, O, z). ( 2 . 4 )  
7~Z 1 

Thus a c c o r d i n g  t o  Eq. ( 2 . 4 )  t h e  c o n s t r u c t i o n  o f  Ozz f rom A and H r e d u c e s  t o  a w e l l -  
d e v e l o p e d  p r o c e d u r e  - i n v e r s i o n  o f  t h e  Radon t r a n s f o r m  [ 5 ] .  The f o r m u l a  ( 2 . 2 )  and ,  c o r r e -  
s p o n d i n g l y ,  Eq. (2.4) have a simple physical meaning: They are the conditions of equilibrium 
of an infinitely thin elements S(m, 8) (see Fig. I). 
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It follows from everything said above that only the components Ozz and the derivative 
with respect to z are determined from the results of transillumination in parallel planes 
z = const. In what follows a particular formulation of the problem, which makes it possible 
to find the remaining components from these values, is analyzed. 

3. We shall assume in addition that Hooke's law is satisfied and there is no normal 
rotation (G = 0). Therefore Oxz and Oy z are determined in the volume in addition to Ozz. 
Let us assume that these components are known in two sections z I and z 2. Then the loads on 
the surface of the volume singled out are completely given and the stresses inside the volume 
are found from the solution of the second basic boundary-value problem of the theory of elas- 
ticity [6]. Reducing Az = (z 2 - zl) (the height of the part that was singled out) we reduce 
the problem to a two-dimensional problem, i.e., we determine all stresses layer by layer. 
This substantially simplifies the calculations. The problem is formulated in terms of 
stresses; the conditions (1.2) are satsified on the side surface. We assume that Ozz and 
correspondingly F are known from the solution of Poisson's equation (1.5). 

To find the invariant o = Zoii we substitute Eq. (1.4) into the two compatibility equa- 
tions 

and transform these equations as follows: 

bz~i ~ F + ~ - - ~  =0, i=x,g. ( 3 . 1 )  

Here the equality, taking into account Eq. (1.5), we employed: 

AF=O~F__ 0[0 ] ~ ~ + A+F= ~ ~ F + a ~ z .  

The value of the invariant o as the general solution of the equations of compatibility 
(3.1) can be represented by a sum of particular and general solutions for Ozz = F = 0. We 
obtain the particular solution by equating the expression in brackets to zero, and by taking 
into account the third equation of compatibility AOzz + O,z z = 0 we reduce the additional 
terms of the general solution to the form I0(x, y) = I1z. 

In the case of two-dimensional strain Ozz = O~z(Z, y) depends only on x and y, the po- 
tential F = 0, and the expression of the invariant transforms into the well-known expression 
[6] and thereby determines I0(x, y); in addition, 11 = 0. 

Finally the solution 

a = ( l  + v )  az~--azZ+Tzz §  + v ) , ~ - - ( a  0 + a r m §  

= e + �9 and a 2 a r e  c o n s t a n t s ,  i s  e x p r e s s e d  in  t e rms  o f  F - t h e  v a l u e  v a n i s h i n g  f o r  ~zz zz ,  a0,  am, 
which  d e t e r m i n e  t h e  homogeneous s t r a i n  w i t h  r e s p e c t  t o  z and t h e  " p u r e "  b e n d i n g .  

We f i n d  t h e  componen ts  Oxx and Oyy from t h e  two e q u a t i o n s  o f  e q u i l i b r i u m  ( 1 . 1 )  w i t h  j = 
x, y.  S u b s t i t u t i n g  i n t o  them Oxx = o - Oyy - Ozz and e l i m i n a t i n g  Oxy we o b t a i n  an e q u a t i o n  
f o r  Oyy: 

A + o ~  k~ - -  ~ -- + i 

The b o u n d a r y  c o n d i t i o n s  ( t . 2 )  f o r  t h e  component  Zyy i s  r e d u c e d  by such  a s u b s t i t u t i o n  t o  
t h e  e q u a t i o n  Zyy = (o - Ozz)n~.  

The solution of Eqs. (i.i) for Oxy can be represented by the curvilinear integral 

f a [  oF] o [  OF1 o (3.2) 

0 Here Oxy i s  chosen  on t h e  c o n t o u r  and s a t i s f i e s  t h e  b o u n d a r y  c o n d i t i o n s  ( 1 . 1 ) .  We s h a l l  
choose  f o r  t h e  i n i t i a l  p o i n t  o f  i n t e g r a t i o n  in  Eq. ( 3 . 2 )  a p o i n t  on t h e  c o n t o u r  F, where ny = 

0 
O, so t h a t  Oxy = O. 

It is obvious from the construction that the stress in the plane is actually given by 
the value of Ozz(X, y) in it and by the first two derivatives of this functions with respect 
to Z. 
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The first derivative of Ozz with respect to z determines Ozx and Ozy, and the combina- 
tion of Ozz and its second derivative with respect to z determines the remaining components 
of the stress. These two functions must satisfy the condition that the integral (3.2) must 
vanish on the contour F. This condition is a consequence of the assumption that the stressed 
state does not contain a normal rotation (G = 0) and can be used in the algorithm in order to 
reduce the errors of the starting measurements. 

Problems formulated in this manner have thus far been solved only for the axisymmetric 
stressed state [4, 7]. The stressed state not containing normal rotation is significantly 
more extensive and contains an axisymmetric state as a particular case. 

In conclusion it is my pleasant duty to thank Kh. K. Aben for proposing the subject and 
also for his constant well-meaning interest in this work. 
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DYNAMIC DUCTILITY PEAK WITH HIGH-VELOCITY FAILURE OF METAL SHELLS 

S. P. Kiselev UDC 539.375.5 

An explanation of the dynamic ductility peak [i] is given. It is shown that this effect 
is connected with a sharp deterioration in metal ductility properties with a strain rate of 

~ l0 s sec -I 

The failure of cylindrical metal shells expanding under the action of detonation products 
with high strain rates of e > 104 sec -1 was studied in [1-4]. Here it was detected that 
high-velocity failure exhibits a number of features which relate to existence of a scale 
effect and a dynamic ductility peak. 

An explanation of these features will be sought within the scope of describing failure 
as a two,stage process [2]. The first stage consists of damage accumulation with plastic 
flow. In the second stage by crack propagation there is separation of the shell parts due 
to stored elastic energy. 

We divide the process of damage accumulation into two stages. We assume that in the 
first stage there is accumulation of point defects, and in the second there is growth of 
pores which are the result of merging of point defects. Similar to [5] we shall assume that 
defects arise with unconservative movement of steps which form from the intersection of 
edge and screw dislocations. Then from [5] it follows that the concentration of defects 
c d = f(e). Since occurrence of pores occurs with some critical concentration of them c~, 
the material should experience some strain s 0 prior to pore growth commencing. 

In the second stage pore growth is determined by the viscosity and inertial properties 
of the material. This assumption is correct with high strain rates. According to [6] the 
equation for pore radius has the form 
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